
SCA Specification Version: Next <Draft>
30 November 2010

 i

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

USERS GUIDE

30 November 2010

Version: Next <Draft>

Prepared by:

JTRS Standards

Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)
33000 Nixie Way

San Diego, CA 92147-5110

Statement A - Approved for public release; distribution is unlimited (30 November 2010)

SCA Specification Version: Next <Draft>
30 November 2010

 ii

REVISION SUMMARY

Version Revision Date

Next <Draft> Initial Draft Release 30 November 2010

SCA Specification Version: Next <Draft>
30 November 2010

 iii

TABLE OF CONTENTS

1 SCA USER’S GUIDE .. 1

1.1 Scope .. 1

2 SCA NEXT INTRODUCTION .. 1

2.1 Separation of Waveform and Operating Environment... 1

2.2 Operating Environment ... 2
2.2.1 Application Environment Profile.. 2

2.2.2 Middleware and Data Transfer ... 2

2.3 JTRS APIs ... 2

2.4 SCA Core Framework.. 3
2.4.1 SCA Devices... 4

2.4.2 Domain Manager .. 6

2.4.3 SCA Next Registration Model.. 7

2.4.4 Application Factory .. 8

2.4.5 Lightweight Components.. 9

2.5 Example SCA Waveform ... 10

3 SCA NEXT RESPONSIBILITIES... 12

4 REFERENCES... 15

5 ACRONYMS.. 16

SCA Specification Version: Next <Draft>
30 November 2010

 iv

TABLE OF FIGURES

Figure 1: Example Radio Powered by SCA Next... 1

Figure 2: JTR Set and Waveform Interfaces .. 3

Figure 3: Core Framework Services ... 4

Figure 4: Devices within Example Radio ... 5

Figure 5: ExecutableDevice Interface UML... 6

Figure 6: SCA Profiles with OE Units of Functionality... 7

Figure 7: Registration for the SCA Full Profile.. 8

Figure 8: Different Types of Port Connections .. 9

Figure 9: Resource Interface Features Optional Inheritance .. 10

Figure 10: Example SCA Waveform.. 11

Figure 11: Example Deployment of FM3TR.. 12

Figure 12: General Allocation of Interfaces to Radio Developers ... 13

Figure 13: SCA Next Component Hierarchy.. 14

SCA Specification Version: Next <Draft>
30 November 2010

 1

1 SCA USER’S GUIDE

1.1 SCOPE
This Users Guide is intended to provide practical guidance and suggestions for developing SCA-

compliant products. It is not a substitute for the SCA specification, but a companion document to provide
guidance and rationale outside the structure of a formal specification. This document will expand in content
and detail as user experiences accumulate with SCA Next.

2 SCA NEXT INTRODUCTION

2.1 SEPARATION OF WAVEFORM AND OPERATING ENVIRONMENT
A fundamental feature of the Software Communications Architecture (SCA) is the separation of

waveforms from the radio’s operating environment. Portability of waveforms is enabled by establishing a
standardized host environment for waveforms, regardless of other radio characteristics. An example
diagram of an SCA-based radio is illustrated in Figure 1. The waveform software is isolated from specific
radio hardware or implementations by standardized APIs.

Figure 1: Example Radio Powered by SCA Next

SCA Specification Version: Next <Draft>
30 November 2010

 2

2.2 OPERATING ENVIRONMENT

2.2.1 Application Environment Profile
To promote waveform portability among the many different choices of operating systems, the SCA

specifies the operating system functionality in POSIX units of functionality. Specific operations such as
pthread_create, open, etc., that waveforms/applications expect to be supported by the radio platform are
defined as subsets of the IEEE POSIX specification. A radio developer is permitted to provide additional
operating system functions, but the waveforms can only access the functions defined in the SCA’s
Application Environment Profile (AEP). This assures any SCA-compliant radio can execute the waveform.

SCA Next defines AEP and Lightweight (lwAEP) profiles, to support SCA conformance across a range
of radio sets ranging from a small handheld to a multichannel radio embedded within an aircraft. The
lwAEP is intended for very constrained processors such as DSPs that typically are not supported with more
capable real-time operating systems. Some waveforms may require networking functions such as socket or
bind. If the radio set is going to host networking waveforms, it must support the Networking Functionality
AEP as an extension to the primary AEP profile (See [7] for additional information on networking).

2.2.2 Middleware and Data Transfer
In Figure 1, the radio platform provides middleware and data/messaging transport in addition to the real-

time operating system. Middleware is a generalized service which facilitates messaging between software
components, possibly hosted on separate processors. SCA 2.2.2 and its predecessors specified CORBA for
the middleware and deferred the specific transport mechanism to the radio set developer. Historical data
transfer mechanisms have been TCP-IP and shared memory. The former can introduce substantial latency
and perhaps has unfairly tarnished CORBA’s reputation within the radio community. A faster transport
such as shared memory generally yields latencies acceptable for high-data rate waveforms. SCA Next has
deleted the CORBA requirement and defined middleware-independent APIs, although they are still specified
through interface definition language (IDL). Radio developers may use CORBA, or select a different
middleware such as the lightweight Remote Procedure Call (RPC) used by the Android platform.
Waveforms would require recompilation for different middleware implementations, but the APIs remain the
same, sustaining waveform portability.

2.3 JTRS APIS
In Figure 1, several independent API sets separate the waveform from the radio set. The primary

emphasis in API standardization has been upon the waveform-to-set interfaces illustrated in Figure 2. Only
the interfaces between the waveform and the radio are standardized. The internal interfaces and transport
mechanisms of the radio are defined as necessary by the radio provider. The intent is to provide portability
or reuse of the waveform between radio platforms and not necessarily portability of the radio operating
environment software. For additional discussion on waveform portability, see [5-6].

SCA Specification Version: Next <Draft>
30 November 2010

 3

Figure 2: JTR Set and Waveform Interfaces

The SCA specification does not document the JTRS APIs which define services provided by the radio
set to the waveform. These include services such as GPS, time, etc. A partial list of the JTRS APIs is
provided in Table 1. The APIs have been developed with software design patterns to define a scalable and
extensible infrastructure. See [2-3] for an introduction to the aggregation, least privilege, extension, explicit
enumeration, and deprecation design patterns for JTRS APIs.

Table 1 Partial List of JTRS APIs

Audio Port Device API Ethernet Device API

Frequency Reference Device API GPS Device API

Modem Hardware Abstraction Layer (MHAL) API Serial Port Device API

Timing Service API Vocoder Service API

MHAL On Chip Bus (MOCB) API Packet API

JTRS Platform Adapter (JPA) API

The JTRS Platform Adapter (JPA) shown in Figure 1 is both an API and a design pattern for controlling

the waveform by the radio set. (It is a particularly vexing problem, to define a portable command/control
interface for waveforms across multiple radio sets.) This API uses the SCA property set as a container for
waveform parameters controlled and manipulated by the radio set. It also supports bidirectional
communication, permitting the waveform to provide status to the radio set.

2.4 SCA CORE FRAMEWORK
In all but the most constrained implementations, the radio platform provides a Core Framework with the

general services depicted in Figure 3. Except for the Domain Manager, the services and implementations

SCA Specification Version: Next <Draft>
30 November 2010

 4

may be distributed among the various processors within the radio. The domain manager, being a singleton,
maintains registries for the various hardware and software resources within the radio. It also provides
interfaces for control by the radio control and management system, not defined within the SCA.

Figure 3: Core Framework Services

The component factory is an optional service that can be used to dynamically construct software

services and components. It replaces the former Resource Factory with a more general constructor useful
for applications, services, devices, and core framework elements.

The SCA defines a file system with global access – any software component anywhere within the radio
can access a file located anywhere within the radio. SCA-compliant components are prohibited from using
the native operating system functions to access files. This requirement increases the portability of
waveforms and components because they can be relocated anywhere within the radio without having to
modify file access. (Radio services and core framework services can access the native operating system file
functions, but not waveforms.)

The application factory is typically the most complex service within the core framework. It is
responsible for loading, instantiating, and connecting together the multiple software components of a
waveform or application. Before describing the activities of the application factory in greater detail, it is
necessary to first explain the concept of an SCA Device.

2.4.1 SCA Devices
An SCA device is a software interface for a piece of hardware which could be an Ethernet adapter, a

modem adapter, or even the microprocessor itself. They are software proxies for hardware and intended to
be used by multiple waveforms or applications. Every processor in the radio will have a Device proxy, as
illustrated in Figure 4. The Device API promotes portability because the same load operation is issued to a
Pentium, PowerPC, or OMAP processor.

SCA Specification Version: Next <Draft>
30 November 2010

 5

Figure 4: Devices within Example Radio

Also depicted in Figure 4 is the Modem Hardware Abstraction Layer (MHAL) device, one of the JTRS

APIs. (The SCA does not mandate the MHAL – other modem devices and APIs can be used instead.) A
Device Manager is a container for all of the Devices located on a processor. It also has responsibility for
managing and reporting the status of the devices registered to it. In Figure 4 there are Device proxies for the
Pentium and OMAP processors. The SCA defines the Device interface to facilitate loading new software
components and binaries upon the processor.

In SCA Next, there are four types of device interfaces: Device, LoadableDevice, ExecutableDevice, and
Aggregate Device. As the nomenclature suggests, they have escalating capabilities and features. In a
departure from SCA 2.2.2, these different interfaces no longer inherit each other. Instead, the finer
granularity of interfaces within SCA Next and the design pattern of optional inheritance discussed in 2.4.5
result in more lightweight components. Figure 5 illustrates the ExecutableDevice interface is an aggregation
and no longer inherits from LoadableDevice as in SCA 2.2.2.

SCA Specification Version: Next <Draft>
30 November 2010

 6

class ExecutableDev ice

«interface»
ExecutableDev ice

+ PRIORITY_ID: string = "PRIORITY" {readOnly}
+ STACK_SIZE_ID: string = "STACK_SIZE" {readOnly}

+ execute(string, Properties, Properties) : ProcessID_Type
+ terminate(ProcessID_Type) : void

«interface»
LifeCycle

+ initialize() : void
+ releaseObject() : void

«interface»
LoadableObject

+ load(Fi leSystem, string, LoadType) : void
+ unload(string) : void

ComponentIdenti fier

«interface»
Dev iceAttributes

+ compositeDevice: AggregateDevice
+ operationalState: OperationalType
+ softwareProfi le: string

INTERROGABLE

«interface»
PortAccessor

+ connectUsesPorts(Connections) : void
+ disconnectPorts(Disconnections) : void
+ getProvidedPorts(Connections*) : void

CONNECTABLE

«interface»
PropertySet

+ configure(Properties) : void
+ query(Properties*) : void

CONFIGURABLE

«interface»
TestableObject

+ runTest(unsigned long, Properties*) : void

TESTABLE

«interface»
ControllableComponent

+ started: boolean

+ start() : void
+ stop() : void

CONTROLLABLE

«interface»
ManageableComponent

+ adminState: AdminType

MANAGEABLE

«interface»
CapacityManager

+ usageState: UsageType

+ allocateCapacity(Properties) : boolean
+ deallocateCapacity(Properties) : void

ALLOCATABLE

Figure 5: ExecutableDevice Interface UML

2.4.2 Domain Manager
The radio set’s domain manager is responsible for controlling and managing all the hardware and

software assets defined for the radio. The full SCA Profile is a plug-and-play profile that supports the
registry interfaces for registering and unregistering elements to Domain and Device Manager components.
This profile is suited for radio platforms where the hardware modules are plug-and-play and supports
dynamic configuration. There are two additional profiles with decreasing levels of functionality as
illustrated in Figure 6. The concept is that an SCA radio can be an almost-infinitely flexible platform with
the Full Profile, or very minimalist with the Lightweight profile. In the Lightweight profile, the radio boots
and begins executing a single waveform with minimal configuration and processing.

SCA Specification Version: Next <Draft>
30 November 2010

 7

Figure 6: SCA Profiles with OE Units of Functionality

Additional units of functionality such as CORBA capable, event channels, log capable, etc., extend the
capabilities of the radio set. These are independently specified in addition to the Full, Medium, or SCA
Profile. The granularity of Figure 6 is a substantial change from earlier versions of the SCA, which had a
one-size-fits-all model.

2.4.3 SCA Next Registration Model
Aside from deleting the CORBA requirement, the largest change in the new SCA version is the

registration model. In SCA 2.2.2, the Domain Manager would query device managers and software
components, embracing a ‘pull’ model. In SCA Next, the ‘push’ model empowers the device managers,
software components, etc., to push registration information to the managing element. This reduces the
communication required between components and even permits ‘static’ configurations that are precompiled
and permitting ‘nearly-instant’ startups.

As a change from SCA 2.2.2, a CORBA naming service is no longer required and not used by the core
framework or other SCA-compliant components. Instead, the Application Factory as shown in Figure 7
maintains a component registry of the components.

When a waveform is to be instantiated, the application factory reads a sequence of XML files (which
could be pre-parsed) to determine what software components need to be launched and where the
components are to be distributed. As illustrated in Figure 7, the Application Factory will send load and
execute commands to the processor (SCA Device) that will be hosting the waveform component. Once the
waveform component has been instantiated, it will register itself with the component registry so that the
application factory can configure and connect that component with other software components.

The Assembly Controller (AC) in Figure 7 is a waveform component defined by the SCA to receive
commands from the domain manager and radio set command and control. This focuses all waveform
control to a single component, which can delegate commands as required.

SCA Specification Version: Next <Draft>
30 November 2010

 8

Figure 7: Registration for the SCA Full Profile

Figure 7 illustrates registration is a ‘push’ model rather than ‘pull’, which is the new SCA design
pattern. Previous versions required the application factory and Device Managers to ‘pull’ registration from
the software elements of the radio. In this ‘push’ model, components are responsible for reporting directly
to the registry. This reduces communication traffic and also enables a least-privilege architecture –
components have the minimum amount of visibility or control to execute their functionality.

2.4.4 Application Factory
In Figure 7, the Application Factory creates the software components by sending instructions to the

Devices representing the processors. After the components have been instantiated, the Application Factory
will send ‘connect’ commands to the components, providing them the object references necessary for them
to communicate with the desired component. The Application Factory reads the Software Assembly
Descriptor (SAD) file, which is the logical equivalent of a schematic diagram to ‘wire’ the waveform
together.

SCA 2.2.2 user experiences with port connections resulted in changes for SCA Next. The new version
of the SCA allows the legacy-type connections, shown as Connection Sequence for Obtainable Ports in
Figure 8. With this design model, the Application Factory queries every component for its connection IDs
to provides ports so the application factory can send them to components that require connection. A slight
modification will be required to legacy waveforms to incorporate the revised port architecture of SCA Next.

SCA Specification Version: Next <Draft>
30 November 2010

 9

Figure 8: Different Types of Port Connections

The connectable port option for SCA permits components to return their connection IDs upon
registration, eliminating the extra communication traffic required for the getProvidesPorts operation. This
new method is not as flexible, or plug-and-play, but it improves startup times for waveforms.

A third variation is where the application factory reads an XML file containing precompiled connection
IDs generated at build time. The application factory does not require registration from these components.
Thus when the components come to life, they are already pre-wired and ready for waveform operation.

2.4.5 Lightweight Components
Users commented that SCA 2.2.2 interfaces were a one-size-fits-all, resulting in some components being

larger than necessary. For example, a SCA 2.2.2 resource component includes testable objects, properties,
etc. But what if a component doesn’t need a self-test or properties? SCA 2.2.2 still required the component
to implement that functionality.

SCA Next introduces a new design pattern – optional inheritance. The new Resource interface is
illustrated in Figure 9. Only one interface is mandatory – Life Cycle. Other interfaces are available as
necessary. Precompiler definitions in the IDL permit developers to specify which interfaces a specific
component requires. Because of this feature, SCA Next components should be smaller than previous
versions.

SCA Specification Version: Next <Draft>
30 November 2010

 10

class Resource

«interface»
Resource

«interface»
LifeCycle

+ initialize() : void
+ releaseObject() : void

«interface»
ComponentIdentifier

+ identifier: string

INTERROGABLE
«interface»

PortAccessor

+ connectUsesPorts(Connections) : void
+ disconnectPorts(Disconnections) : void
+ getProvidedPorts(Connections*) : void

CONNECTABLE

«interface»
PropertySet

+ configure(Properties) : void
+ query(Properties*) : void

CONFIGURABLE

«interface»
TestableObject

+ runTest(unsigned long, Properties*) : void

TESTABLE

«interface»
ControllableComponent

+ started: boolean

+ start() : void
+ stop() : void

CONTROLLABLE

Figure 9: Resource Interface Features Optional Inheritance

SCA Next defines a legacy flag which permits developers to turn on all the interfaces as with previous
versions of the SCA. As mentioned earlier, SCA Next has reworked the port interfaces. Earlier versions
had two port interfaces – port and portSupplier. SCA Next has deleted those interfaces in favor of a single
PortAccessor interface which combines the functionality. Legacy SCA 2.2.2 waveforms will require
updating to the new PortAccessor interface, but other modifications should not be necessary.

The optional inheritance design pattern has been extended elsewhere within other core framework
interfaces. For example, the LoadableCapacity interface was previously required of all loadableDevices. In
some implementations, the functionality provided by this interface may be unused, so SCA Next permits the
component to be constructed without it.

2.5 EXAMPLE SCA WAVEFORM
The publicly available FM3TR waveform architecture is illustrated in Figure 10. (This waveform is

available from the JTRS Open Source Information Repository [4].) The yellow-colored components
represent radio set functionality, whereas the red and blue colored blocks represent waveform software
components. The SCA defines port connections, or interfaces for each macro-sized component. (The Data
Link Control (DLC) component could be an aggregation of many smaller pieces, but only exposes the
minimal interface connections to the at-large system.)

The blue and red software components on the GPP expose: in, out, and control ports. These are
interfaces that can be connected to other software components, radio services, or radio set hardware devices.
Generally, the ‘in’ ports are described as ‘provides’ ports, whereas the ‘out’ ports are ‘uses’ ports, because
they either provide or use port connections, respectively.

Using either the middleware services provided by the radio set, or direct C++ pointers, connection IDs
and object references permit independent software components to communicate. The components only need
each other’s pointer or object reference. The messaging becomes more difficult if the components are

SCA Specification Version: Next <Draft>
30 November 2010

 11

distributed into separate memory partitions. For such deployments, middleware services allow a general
solution to be applied throughout the complete radio set.

Figure 10: Example SCA Waveform

The FM3TR waveform is a simple time domain multiplexed access (TDMA) application with
Continuous Phase Frequency Shift Keying (CPFSK) as the baseband modulation. The JTRS
implementation provides either data or voice operation. Continuously Variable-Slope Delta modulation
(CVSD) is implemented for the vocoder. Reed-Solomon (R-S) forward error coding is used to improve the
bit reliability of the wireless link.

The Data Multiple Access Control (MAC) is an SCA resource that converts the input data stream into
data symbols grouped to match the R-S coding format. The voice MAC performs a similar operation for the
data stream produced by the vocoder. The A-code is a simple 32-bit synchronization code used to
synchronize transmitter and receiver. The S-code is a second synchronization word used to identify data
packet types such as voice, data, etc.

The architecture and deployment of this waveform is fairly typical for SCA implementations, although
other variations are possible. In this example, the waveform components within the FPGA and DSP do not
have SCA interfaces. Historically radio architects have attempted to wring the last drop of performance
from the DSP and FPGA devices and not implemented SCA interfaces on these lower-level software
components. There is a substantial cost for this strategy – a loss of portability for these waveform
components.

SCA Next introduces the lwAEP which restores portability for these software components without
unnecessarily burdening the DSP and FPGA processing elements. The MHAL On Chip Bus (MOCB)
specification allows better utilization of DSP and FPGA resources than the MHAL API, replacing the
pushpacket operation model with a shared memory ‘pull’ architecture. MOCB is recommended for new
designs.

SCA Specification Version: Next <Draft>
30 November 2010

 12

An example deployment of FM3TR is illustrated in Figure 11 with the radio devices, radio services, and
core framework components.

Figure 11: Example Deployment of FM3TR

3 SCA NEXT RESPONSIBILITIES
In the body of the specification, the figure - Core Framework IDL Relationships accurately depicts

complete set of SCA Next interfaces and their inheritances. Because of its history, the SCA Next
documentation blurs discussion between the components hosted by the radio set and those provided by
waveforms. Figure 12 attempts to identify specific interfaces of interest to the various stakeholders in a
radio set architecture.

The base SCA interfaces will probably be used throughout the radio, even with device and framework
implementations. But the absence of ‘shalls’ requiring these interfaces disqualify an ‘x’ for the interface.

SCA Specification Version: Next <Draft>
30 November 2010

 13

Figure 12: General Allocation of Interfaces to Radio Developers

Another helpful perspective of SCA Next is the component hierarch diagram illustrated in
Figure 13.

SCA Specification Version: Next <Draft>
30 November 2010

 14

Figure 13: SCA Next Component Hierarchy

SCA Specification Version: Next <Draft>
30 November 2010

 15

4 REFERENCES
1 JTRS SCA Website, http://sca.jpeojtrs.mil/home.asp

2 Donald R. Stephens, Cinly Magsombol, Chalena Jimenez, "Design patterns of the JTRS
infrastructure", MILCOM 2007 - IEEE Military Communications Conference, no. 1, October 2007,
pp. 835-839

3 Cinly Magsombol, Chalena Jimenez, Donald R. Stephens, "Joint tactical radio system—
Application programming interfaces", MILCOM 2007 - IEEE Military Communications
Conference, no. 1, October 2007, pp. 855-861

4 JTRS Open Source Information Repository, http://gforge.calit2.net/gf/project/jtrs_open_ir/

5 Donald R. Stephens, Rich Anderson, Chalena Jimenez, Lane Anderson, "Joint tactical radio
system—Waveform porting", MILCOM 2008 - IEEE Military Communications Conference, vol. 27,
no. 1, November 2008, pp. 2629-2635

6 JTRS Waveform Portability Guidelines, http://sca.jpeojtrs.mil/portabilityguidelines.asp

7 Donald R. Stephens, Cinly Magsombol, Norman Browne, "Network programming of joint tactical
radio system radios", MILCOM 2008 - IEEE Military Communications Conference, vol. 27, no. 1,
November 2008, pp. 2623-2628

http://sca.jpeojtrs.mil/home.asp
http://gforge.calit2.net/gf/project/jtrs_open_ir/
http://sca.jpeojtrs.mil/portabilityguidelines.asp

SCA Specification Version: Next <Draft>
30 November 2010

 16

5 ACRONYMS

Abbreviation Definition

AC Assembly Controller

AEP Application Environment Profile

API Application Program Interface

CF Core Framework

CORBA Common Object Request Broker Architecture

CPFSK Continuous Phase Frequency Shift Keying

CVSD Continuously Variable-Slope Delta modulation

DLC Data Link Control

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

GPP General Purpose Processor

HCI Human-Computer Interface

ID Identification, Identifier

IDL Interface Definition Language

IEEE Institute of Electrical and Electronic Engineers

IOR Interoperable Object Reference

ISO International Standards Organization

JPA JTRS Platform Adapter

lwAEP Lightweight Application Environment Profile

MHAL Modem Hardware Abstraction Layer

MOCB MHAL On Chip Bus

OE Operating Environment

OMG Object Management Group

ORB Object Request Broker

OS Operating System

SCA Specification Version: Next <Draft>
30 November 2010

 17

Abbreviation Definition

OMAP Open Multimedia Application Platform

POSIX Portable Operating System Interface

RPC Remote Procedure Control

R-S Reed Solomon

SAD Software Assembly Descriptor

SCA Software Communications Architecture

SW Software

TCP-IP Transmission Control Protocol (TCP) and Internet Protocol (IP)

TDMA Time Division Multiplexed Access

UML Unified Modeling Language

XML eXtensible Markup Language

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

